Computing singular points of plane rational curves
نویسندگان
چکیده
منابع مشابه
Computing singular points of plane rational curves
We compute the singular points of a plane rational curve, parametrically given, using the implicitization matrix derived from the μ-basis of the curve. It is shown that singularity factors, which are defined and uniquely determined by the elementary divisors of the implicitization matrix, contain all the information about the singular points, such as the parameter values of the singular points ...
متن کاملSingular Points of Plane Curves
ly isomorphic to (C×)r−1 × (C), and hence also to (S1)r−1 × (R), where r = |J | is the number of branches and k = δ(C)− r+1 = 1 2 (μ(C) + 1 − r). The construction of the Jacobian variety J(C̃) of the non-singular curve C̃ in the large is standard in algebraic geometry. There is also a notion of Jacobian of a singular curve C , defined e.g. in [85], which, like the other, is an abelian group. Ther...
متن کاملOn the Number of Singular Points of Plane Curves *
This is an extended, renovated and updated report on our joint work [OZ]. The main result is an inequality for the numerical type of singularities of a plane curve, which involves the degree of the curve, the multiplicities and the Milnor numbers of its singular points. It is a corollary of the logarithmic Bogomolov-Miyaoka-Yau's type inequality due to Miyaoka. It was first proven by F. Sakai a...
متن کاملThe Newton Polygon of Plane Curves with Many Rational Points
This curve has the points (1 : 0 : 0) and (0 : 1 : 0) at infinity over any field. The affine equation is XY +Y +X = 0. The origin is a point of this curve. If (x, y) ∈ F8 is a point of this curve with nonzero coordinates, then x = 1. So 0 = xy + y + x = xy + xy + x = x[(xy) + (xy) + 1]. Let t = xy. Then t + t+ 1 = 0. So the Klein quartic has 3.7 = 21 rational points over F8 with nonzero coordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2008
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2007.10.003